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Nearest Neighbor First passage percolation model on Z¢

o Consider Z9 wuth nearest neighbor edges, where each edge
has an i.i.d. nonnegative weight from a fixed distribution F.
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Nearest Neighbor First passage percolation model on Z¢

o Consider Z9 wuth nearest neighbor edges, where each edge
has an i.i.d. nonnegative weight from a fixed distribution F.

@ For a path 3, the passage time for ¥ is defined as the sum of
weights over all the edges in ‘3.

o For x,y € Z9, the first-passage time a(x,y) is defined as the
passage time over all paths from x to y.
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@ The model was introduced by Hammersley and Welsh in 1965,
where they proved that for all x € Z¢

v(x) = lim % E(a(0, nx))

exists and is finite when the edge weights have finite mean.
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n—oo n

exists and is finite when the edge weights have finite mean.

o Kesten('86) proved that, v(x) > 0 iff F(0) < pc(d), where
pe(d) is the critical probability for bond percolation in Z9.
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@ The model was introduced by Hammersley and Welsh in 1965,
where they proved that for all x € Z¢

V(x) = lim L E(a(0, nx))

n—oo n

exists and is finite when the edge weights have finite mean.

o Kesten('86) proved that, v(x) > 0 iff F(0) < pc(d), where
pe(d) is the critical probability for bond percolation in Z9.

@ The shape theorem by Cox and Durrett('81) says that

)

1 J 1 177 oo
?{XGZ 1a(0,x) <t} @ ~%5 — B

where B = {x : v(x) < 1} is a convex subset of RY.
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The model was introduced by Hammersley and Welsh in 1965,
where they proved that for all x € Z¢

V(x) = lim L E(a(0, nx))

n—oo n

exists and is finite when the edge weights have finite mean.

Kesten('86) proved that, v(x) > 0 iff F(0) < pc(d), where
pe(d) is the critical probability for bond percolation in Z9.

The shape theorem by Cox and Durrett('81) says that

)

1 J 1 177 oo
—{xeZ:a0,x)<t}® |—=,=| — B
t 2°2

where B = {x : v(x) < 1} is a convex subset of RY.
Var(a(0, nx)) = o(n).
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Shape Theorem

Figure: Limiting shape for {x € Z9 : a(0,x) < t}.



Long-range First-Passage Percolation (LRFPP) on Z¢

o Let || - || be the ¢ norm on Z9.
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Long-range First-Passage Percolation (LRFPP) on Z¢

Let || - || be the ¢; norm on Z9.

Now consider the complete graph on Z¢ with unoriented edge
set & = {(xy) :x,y € Z9 x #y}.

Let {W, : e € &} be a collection of i.i.d. mean one
exponentially distributed random variables.

For a self avoiding path p = (xox1 ...Xk) with k edges, define
its a-th passage time Wy* := Zf-;l [[xi = Xi—1]|* Wk, 1x;)-

For x,y € Z9, the a-th first-passage time is

Tx,y) = pierg Wy,
xy

where Pyy is the set of all self-avoiding paths joining x and y.

Question: How does T%(0,x) behave as ||x|| grows?
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Alternative formulation for a > d

a > d implies > ,q [|x]|7% < oo.

This formulation is an extension of Richardson's model.
Each site of Z9 is either occupied or vacant.

Initially the origin is occupied only.

Once x is occupied, it attempts to communicate at rate 1 and
in each attempt it chooses a site y with probability
c||x — y|| 7 and makes it occupied.

@ Occupied sites stay occupied.

Question: If B is the set of vertices occupied by time t, then how
does it grow?
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Growth dynamics cartoon
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Appearance of LRFPP

Mollison (1972) has considered similar models in the context
of spatial propagation of epidemics. He proves linear growth
ind=1fora>3.

e Cannas, Marco and Montemurro (2006) have considered long
distance dispersal models in the context of biological invasion.

@ Aldous (2007) has considered similar models on a torus in the
context of random percolation of information through agent
networks, and studied various related game theoretic aspects.

e C. and Durrett (2011) have considered a related continuous
model (short-long FPP) on torus.

@ Barbour and Reinert (arXiv) have considered gossip models on
smooth Riemannian manifold.
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Long-range percolation (LRP) results

x,y € Z9 are connected by an edge independently with prob.
Pry = [x —y[7*T°M as |x — y| = oo

Let D(.,.) be the associated random metric, B(x, k) be the balls
and D; be the diameter of connected component of [—L, L]?.

@ LRP in one dimension:

Schulman ('83):

Aizenman and Newman, Newman and Schulman ('86)
Imbrie and Newman ('88)

Benjamini and Berger ('01):

e Coppersmith, Gamarnik and Sviridenko ('02): Diameter of
LRP clusters.

e Biskup (2004, arXiv): Behavior of graph distance and D; for
d<a<?2d.

o Trapman (2010): limits of |B(0, k)|*/* as k — oo.
o Berger (arXiv): Lower bound for D(.,.) when a@ > 2d
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Long-range percolation (LRP) results

x,y € Z9 are connected by an edge independently with prob.

Pry = [x —y[7* M as |x — y| = 0.

Let D; be the diameter of connected component of [—L, L]? in the
associated random metric.

— [a/(d—a)],a<d (Cor. of Benjamini, Kesten
Peres and Schramm ('04))
= logL/loglogL,a=d (Coppersmith, Gamarnik
Dy and Sviridenko ('02))
= (log L)A@)+o() ¢ < o < 2d  (Biskup (arXiv))
= [9(B)+o(1) (expected!), for pxy = Blx —y| =29
= L(expected!), for a > 2d.
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Simulation for BY = {x € Z? : T%(0,x) < t}

Figure: Growth for @ = 3 (top two), 3.5 (bottom two)
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Simulation for B¢ = {x € Z?: D*(0,x) < t}

Figure: Growth for @ = 4 (top two), 4.5 (bottom two)
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Simulation for B¢ = {x € Z?: D*(0,x) < t}

Figure: Growth for & = 5 (top two), 5.5 (bottom left), 6 (bottom right)
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Conclusions of Cannas, Marco and Montemurro (2006)

S

ﬁ }
S
;

Figure: Abundance of C. grandiflora and box counting plot

Conclusions: Based on the existence of second moment of the dispersal
distribution, “« > 2d" behavior of the model is same as that of the short
range models.

For two dimension, the box counting dimension for the boundary curve is
independent of « for 2 < a < 3 and decreasing for 3 < a < 4.
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Our result: Phase transition

@ Instantaneous growth regime: a < d.
Here B = Z9 for any t > 0 with probability 1.

@ Stretched exponential growth regime: d < a < 2d.
Here, the diameter of By is exp(t}/A+°(), where
A = log2/log(2d/a)) which increases from 1 to co as « goes
from d to 2d.

@ Superlinear growth regime: 2d < a < 2d + 1.
Here, the diameter of B is t¥/(@=2d)+o(1) 5o the index
decreases from oo to 1 as « goes from 2d to 2d + 1.

o Linear Growth regime: o > 2d + 1.
Here, the diameter of B¢ is t1*o(1).

“Superlinear regime” disproves the first conclusions of CMM ('06).
Phase transitions in the LRP and LRFPP models are not identical.
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Instantaneous growth, a < d

We show P(T%(0,x) < t) =1 forany t >0 and x € Z9.
o Fix an integer K > d/(d — a) and let {; = 2/(k — 1)/||x]|.
o Let B,.(j) = {y € Z9:(2i — 1)¢; < |ly|| < 2i¢;} and

Pji={m = (0x1...XKk-1X) : X € BI.U)}_
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Instantaneous growth, a < d

We show P(T%(0,x) < t) =1 forany t >0 and x € Z9.
o Fix an integer K > d/(d — a) and let {; = 2/(k — 1)/||x]|.
o Let BY .= {y e z9: (2i — 1)¢; < |ly|| < 2i¢;} and

Pji={m = (0x1...XKk-1X) : X € BI.U)}_

@ Using second moment argument

(EN;)?
P f W<t here N; := W <
<7rlgp > EIVJ , where N; := |P;n{r : t}].

@ Using tail bounds for sum of independent exponential random
variables we can lower bound E(N;) and upper bound E(N2)

P ( inf W2 < t) > 6 > 0 independent of ;.
TEP;

o So P(T*(0,x) > t) < [[; P(infrep, Wg > 1) = 0.



Upper bound for Diam(B¢)

For a € (d,2d), recall A :=1/log,(2d/a) € (1, 00).
We show P(T%(0,x) < t) < exp (c;ltl/AJrE — ¢ In||x||) for small
£ >0, so for a € (d,2d), T*(0,x) > (In||x|))2~¢ w.h.p.
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Upper bound for Diam(B¢)

For a € (d,2d), recall A :=1/log,(2d/a) € (1, 00).

We show P(T%(0,x) < t) < exp (c1t/2AF¢ — c;In[|x||) for small
£ >0, so for a € (d,2d), T*(0,x) > (In||x|))2~¢ w.h.p.

Sketch: Let g(u) := E|B%| be the expected volume.

Let N(x) be the number of edges in the optimal path from 0 to x.
N(x) small means a long edges has been used in the optimal path:

P(T%(0,x) < t, N(x) < at) <|[x|["%(at)" /Otg(y)[g(t—y)—ll dy.

N(x) large means too many edges are used within small time.
Using large deviation estimates:

P(T*(0,x) <t,N(x)>a-t)<c|x]|“exp(—d(a)t).

Combining (1) and (2) and using g(t) = >, P(T%(0,x) < t) get
a recursive inequality for g(-). Solve it.
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Lower bound for diameter

Sketch: Let f: Ry — R4 with 2f(x) < x.

Fix x with ||x|| = n. Define fy = n and fx = f(fx_1) inductively.
Min weight of an edge between B(0, f;) and B(x, f1) is exponential
with rate

S —ul T~ (n—2m) R
ueB(0,),veB(x,f)

Let the end points for the minimal edge be uj, vy respectively.
Consider minimal edge between B(0, f»), B(uy, f2) and between
B(v1, 2), B(X, f;) and proceed similarly.

After k steps, we have 2k balls of radius f, and the optimal time is
upper bounded by

k
Z 2i_1(f;-_1 o 2f;-)0‘f;,_2d + 2kfk-
i=1
We have to optimize this over the function f and k.



Lower bound for diameter

e For d < a < 2d, we take f(x) = x” and the optimal
v =a/2d.
@ The optimal k is such that f; ~ 1.

@ Here the upper bound for T%(0,x) shows that
P(T(0,x) > (log ||x||)A*¢) — 0 fast for any £ > 0.

e For 2d < a < 2d + 1, we take f(x) = x/a with a > 2 and the
optimal a goes to 2 as a 1 2d + 1.

@ The optimal k is again such that f; ~ 1.

@ The upper bound on T%(0,x) gives
P(T%(0,x) > ||x||*29+¢) — 0 fast for any € > 0.
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Upper bound for diameter for 2d < o« < 2d + 1

Our previous technique of estimating P(T<(0,x) < t) gives
P(T*(0,x) <t) < C(t"/||x|])* for some v > 1/(cx — 2d),

which does not give matching upper bound for diameter.

We show that if P(Diam(B¢) < t7) — 1 for some v > 1/(a — 2d),
then we can improve 7 recursively to have eventually

P(Diam(B%) < t¥/(@=29)+2) 5 1 for any € > 0.
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Upper bound for diameter for 2d < o« < 2d + 1

@ Suppose P(Diam(B¢) < t7) — 1 for some v > 1/(a — 2d).

@ W.h.p. no edge of length > t will be used till time t, where
(vd+1)/(a—d) < 0.

@ On the above ‘good’ event, x € BY' implies

t>T%0,x) > inf > lel*We

- §
pEPo x: no edge >t py=

> t700=) 180, x).

e So By C Btﬁl+6(ﬂ—a) w.h.p.

o If 3 just crosses 2d + 1, then assuming linear growth of
T7(0,x) w.h.p. the diameter of B¢ is at most
1+6(8—a)<7.
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Linear growth for a > 2d + 1

@ Nearest neighbor growth ensures at most linear growth for
740, x).

@ In view of subadditivity, It suffices to show at least linear
growth for T%(0, x).

@ The key is that if
d+1

a—d’ ),
then no edge of length n? is used within time n by a vertex in
the Euclidean ball of diameter n.

0 < (

e Divide [0, n]¢ into a grid of size n’, and the optimal path from
0 to ne; must jump from a box to a nearest neighbor box.

o It crosses O(n'~?) such boxes and takes at least O(n?) time
for a fraction of them by a renormalization argument.
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Future questions

Study the critical values a = d,2d,2d + 1.
Properties of rescaled growth set.

Bounds for boundary fluctuations.

On a torus study the time evolution of the fraction covered.

S. Chatterjee LRFPP



Thank You
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