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Nearest Neighbor First passage percolation model on Zd

Consider Zd wuth nearest neighbor edges, where each edge
has an i.i.d. nonnegative weight from a fixed distribution F .

For a path P, the passage time for P is defined as the sum of
weights over all the edges in P.

For x, y ∈ Zd , the first-passage time a(x, y) is defined as the
minimum passage time over all paths from x to y.
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Mean behavior

The model was introduced by Hammersley and Welsh in 1965,
where they proved that for all x ∈ Zd

ν(x) = lim
n→∞

1

n
E(a(0, nx))

exists and is finite when the edge weights have finite mean.

Kesten(’86) proved that, ν(x) > 0 iff F (0) < pc(d), where
pc(d) is the critical probability for bond percolation in Zd .

The shape theorem by Cox and Durrett(’81) says that

1

t
{x ∈ Zd : a(0, x) ≤ t} ⊕

[
−1

2
,

1

2

]d
t→∞−→ B,

where B = {x : ν(x) ≤ 1} is a convex subset of Rd .

Var(a(0, nx)) = o(n).
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Shape Theorem

Figure: Limiting shape for {x ∈ Zd : a(0, x) ≤ t}.
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Long-range First-Passage Percolation (LRFPP) on Zd

Let || · || be the `1 norm on Zd .

Now consider the complete graph on Zd with unoriented edge
set E = {〈xy〉 : x, y ∈ Zd , x 6= y}.
Let {We : e ∈ E } be a collection of i.i.d. mean one
exponentially distributed random variables.

For a self avoiding path p = 〈x0x1 . . . xk〉 with k edges, define
its α-th passage time W α

p :=
∑k

i=1 ||xi − xi−1||αW〈xi−1xi 〉.

For x, y ∈ Zd , the α-th first-passage time is

Tα(x, y) := inf
p∈Pxy

W α
p ,

where Pxy is the set of all self-avoiding paths joining x and y.

Question: How does Tα(0, x) behave as ||x|| grows?
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Alternative formulation for α > d

α > d implies
∑

x∈Zd ||x||−α <∞.

This formulation is an extension of Richardson’s model.

Each site of Zd is either occupied or vacant.

Initially the origin is occupied only.

Once x is occupied, it attempts to communicate at rate 1 and
in each attempt it chooses a site y with probability
c ||x− y||−α and makes it occupied.

Occupied sites stay occupied.

Question: If Bαt is the set of vertices occupied by time t, then how
does it grow?

S. Chatterjee LRFPP



Growth dynamics cartoon

S. Chatterjee LRFPP



Growth dynamics cartoon

S. Chatterjee LRFPP



Growth dynamics cartoon

S. Chatterjee LRFPP



Growth dynamics cartoon

S. Chatterjee LRFPP



Growth dynamics cartoon

S. Chatterjee LRFPP



Growth dynamics cartoon

S. Chatterjee LRFPP



Growth dynamics cartoon

S. Chatterjee LRFPP



Growth dynamics cartoon

S. Chatterjee LRFPP



Growth dynamics cartoon

S. Chatterjee LRFPP



Appearance of LRFPP

Mollison (1972) has considered similar models in the context
of spatial propagation of epidemics. He proves linear growth
in d = 1 for α > 3.

Cannas, Marco and Montemurro (2006) have considered long
distance dispersal models in the context of biological invasion.

Aldous (2007) has considered similar models on a torus in the
context of random percolation of information through agent
networks, and studied various related game theoretic aspects.

C. and Durrett (2011) have considered a related continuous
model (short-long FPP) on torus.

Barbour and Reinert (arXiv) have considered gossip models on
smooth Riemannian manifold.
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Long-range percolation (LRP) results

x, y ∈ Zd are connected by an edge independently with prob.
pxy = |x− y|−α+o(1) as |x− y| → ∞.
Let D(., .) be the associated random metric, B(x, k) be the balls
and DL be the diameter of connected component of [−L, L]d .

LRP in one dimension:

Schulman (’83):
Aizenman and Newman, Newman and Schulman (’86)
Imbrie and Newman (’88)
Benjamini and Berger (’01):

Coppersmith, Gamarnik and Sviridenko (’02): Diameter of
LRP clusters.

Biskup (2004, arXiv): Behavior of graph distance and DL for
d < α < 2d .

Trapman (2010): limits of |B(0, k)|1/k as k →∞.

Berger (arXiv): Lower bound for D(., .) when α > 2d
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Long-range percolation (LRP) results

x, y ∈ Zd are connected by an edge independently with prob.
pxy = |x− y|−α+o(1) as |x− y| → ∞.
Let DL be the diameter of connected component of [−L, L]d in the
associated random metric.

DL



→ dα/(d − α)e, α < d (Cor. of Benjamini, Kesten

Peres and Schramm (’04))

� log L/ log log L, α = d (Coppersmith, Gamarnik

and Sviridenko (’02))

= (log L)∆(α)+o(1), d < α < 2d (Biskup (arXiv))

= Lθ(β)+o(1)(expected!), for pxy = β|x− y|−2d

� L(expected!), for α > 2d .

S. Chatterjee LRFPP



Simulation for Bαt = {x ∈ Z2 : T α(0, x) ≤ t}

Figure: Growth for α = 3 (top two), 3.5 (bottom two)
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Simulation for Bαt = {x ∈ Z2 : Dα(0, x) ≤ t}

Figure: Growth for α = 4 (top two), 4.5 (bottom two)
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Simulation for Bαt = {x ∈ Z2 : Dα(0, x) ≤ t}

Figure: Growth for α = 5 (top two), 5.5 (bottom left), 6 (bottom right)
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Conclusions of Cannas, Marco and Montemurro (2006)

As can be seen in the vegetation cover map of C. grandiflora in Fig. 9, the overall spatial pattern
predicted by the simulation (see Fig. 1(b)) appears in a very large spatial scale (hundreds of km,
Fig. 9), i.e., a main patch with an irregular border, centered around the focus of the introduction
(Charter Towers [21]), surrounded by a distribution of secondary patches. A similar pattern, but
in a much smaller spatial scale can be observed in a vegetation cover map for P. ponderosa (several
km, Fig. 2 in Ref. [22]). This is consistent with the time scale associated with the spread of each
species (more than 100 years for C. grandiflora [21] and around 30 years for P. ponderosa [22]).

In order to obtain a quantitative comparison we first calculate the fractal dimension of the main
patch border in both cases. To this end, we digitized both images and isolated the border of all
patches. Then we applied the box counting algorithm to the borders, i.e., we calculated the num-
ber of boxes needed to cover only the patch border. The fact that all patches present a similar

Fig. 9. Abundance (% of cover, derived by Inverse Distance Weighted Interpolation) of C. grandiflora in Dalrymple
Shire, northern Queensland, Australia (reproduced from Grice et al. [21]). The star indicates the site of first
introduction.
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the crossover observed between curves corresponding to different values of a suggest that the long
term regime has indeed been attained in the time period here considered. We see that the average
value Dav increases as a decreases. Such value can be estimated by averaging the values of D over
the last six points of every curve (which corresponds approximately to the period of oscillation
observed for a = 4). In Fig. 4 we show Dav as a function of a. We can clearly distinguish two dif-
ferent regimes: when 2 < a 6 3 the average fractal dimension appears to be independent of a, with
a value that can be roughly estimated as Dav = 1.73 ± 0.03, while it decreases monotonously with
a when 3 < a 6 4. This type of behavior (stationary properties independent of a when all the mo-
ments of the distribution are not defined) is typical of systems with long range interactions and
have been observed in several other cellular automata models [15–17]. We also performed some
simulations for tm = 10 and two values of a, to check the influence of tm the different structures.
The mean fractal dimension of the border is compared with the corresponding curves for tm = 7 in
Fig. 5. The results for a < 3 suggest that the long term behavior of D is almost insensitive to tm,
while for a > 3 there appears to be small dependency on tm.

α
1 3 4 5

Dav

1.3

1.4

1.5

1.6

1.7

1.8

1.9

 1.73

2

Fig. 4. Average fractal dimension at long times as a function of a for L = 1024 and tm = 7.

Fig. 3. Mean fractal dimension as a function of time for L = 1024, tm = 7 at different values of a.
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Figure: Abundance of C. grandiflora and box counting plot

Conclusions: Based on the existence of second moment of the dispersal
distribution, “α > 2d” behavior of the model is same as that of the short
range models.

For two dimension, the box counting dimension for the boundary curve is

independent of α for 2 < α < 3 and decreasing for 3 < α < 4.
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Our result: Phase transition

Instantaneous growth regime: α < d .
Here Bαt = Zd for any t > 0 with probability 1.

Stretched exponential growth regime: d < α < 2d .
Here, the diameter of Bαt is exp(t1/∆+o(1)), where
∆ = log 2/ log(2d/α)) which increases from 1 to ∞ as α goes
from d to 2d .

Superlinear growth regime: 2d < α < 2d + 1.
Here, the diameter of Bαt is t1/(α−2d)+o(1), so the index
decreases from ∞ to 1 as α goes from 2d to 2d + 1.

Linear Growth regime: α > 2d + 1.
Here, the diameter of Bαt is t1+o(1).

Remarks:
“Superlinear regime” disproves the first conclusions of CMM (’06).
Phase transitions in the LRP and LRFPP models are not identical.
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Instantaneous growth, α < d

We show P(Tα(0, x) ≤ t) = 1 for any t > 0 and x ∈ Zd .

Fix an integer K > d/(d − α) and let `j = 2j(k − 1)j ||x||.
Let B

(j)
i := {y ∈ Zd : (2i − 1)`j ≤ ||y|| ≤ 2i`j} and

Pj := {π = 〈0x1 . . . xK−1x〉 : xi ∈ B
(j)
i }.

Using second moment argument

P

(
inf
π∈Pj

W α
π ≤ t

)
≥ (ENj)

2

EN2
j

, where Nj := |Pj∩{π : W α
π ≤ t}|.

Using tail bounds for sum of independent exponential random
variables we can lower bound E (Nj) and upper bound E (N2

j )

P

(
inf
π∈Pj

W α
π ≤ t

)
≥ δ > 0 independent of j .

So P(Tα(0, x) > t) ≤∏j P(infπ∈Pj
W α
π > t) = 0.
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Upper bound for Diam(Bαt )

For α ∈ (d , 2d), recall ∆ := 1/ log2(2d/α) ∈ (1,∞).
We show P(Tα(0, x) ≤ t) ≤ exp

(
c1t

1/∆+ε − c2 ln ||x||
)

for small
ε > 0, so for α ∈ (d , 2d), Tα(0, x) ≥ (ln ||x||)∆−ε w.h.p.

Sketch: Let g(u) := E |Bαu | be the expected volume.
Let N(x) be the number of edges in the optimal path from 0 to x.
N(x) small means a long edges has been used in the optimal path:

P(Tα(0, x) ≤ t,N(x) ≤ a·t) ≤ ||x||−α(at)α
∫ t

0
g(y)[g(t−y)−1] dy .

N(x) large means too many edges are used within small time.
Using large deviation estimates:

P(Tα(0, x) ≤ t,N(x) > a · t) ≤ c ||x||−α exp(−δ(a)t).

Combining (1) and (2) and using g(t) =
∑

x P(Tα(0, x) ≤ t) get
a recursive inequality for g(·). Solve it.
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Lower bound for diameter

Sketch: Let f : R+ → R+ with 2f (x) < x .
Fix x with ||x|| = n. Define f0 = n and fk = f (fk−1) inductively.
Min weight of an edge between B(0, f1) and B(x, f1) is exponential
with rate ∑

u∈B(0,f1),v∈B(x,f1)

|v − u|−α ∼ (n − 2f1)−αf 2d
1 .

Let the end points for the minimal edge be u1, v1 respectively.
Consider minimal edge between B(0, f2),B(u1, f2) and between
B(v1, f2),B(X, f2) and proceed similarly.
After k steps, we have 2k balls of radius fk and the optimal time is
upper bounded by

k∑
i=1

2i−1(fi−1 − 2fi )
αf −2d

i + 2k fk .

We have to optimize this over the function f and k .
S. Chatterjee LRFPP



Lower bound for diameter

For d < α < 2d , we take f (x) = xγ and the optimal
γ = α/2d .

The optimal k is such that fk ≈ 1.

Here the upper bound for Tα(0, x) shows that
P(Tα(0, x) ≥ (log ||x||)∆+ε)→ 0 fast for any ε > 0.

For 2d < α < 2d + 1, we take f (x) = x/a with a > 2 and the
optimal a goes to 2 as α ↑ 2d + 1.

The optimal k is again such that fk ≈ 1.

The upper bound on Tα(0, x) gives
P(Tα(0, x) ≥ ||x||α−2d+ε)→ 0 fast for any ε > 0.
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Upper bound for diameter for 2d < α < 2d + 1

Our previous technique of estimating P(Tα(0, x) ≤ t) gives

P(Tα(0, x) ≤ t) ≤ C (tγ/||x||)α for some γ > 1/(α− 2d),

which does not give matching upper bound for diameter.

We show that if P(Diam(Bαt ) ≤ tγ)→ 1 for some γ > 1/(α− 2d),
then we can improve γ recursively to have eventually

P(Diam(Bαt ) ≤ t1/(α−2d)+ε)→ 1 for any ε > 0.
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Upper bound for diameter for 2d < α < 2d + 1

Suppose P(Diam(Bαt ) ≤ tγ)→ 1 for some γ > 1/(α− 2d).

W.h.p. no edge of length ≥ tδ will be used till time t, where
(γd + 1)/(α− d) < δ.

On the above ‘good’ event, x ∈ Bαt implies

t ≥ Tα(0, x) ≥ inf
p∈P0,x: no edge ≥tδ

∑
e∈p
|e|αWe

≥ t−δ(β−α)T β(0, x).

So Bαt ⊂ Bβt1+δ(β−α) w.h.p.

If β just crosses 2d + 1, then assuming linear growth of
T β(0, x) w.h.p. the diameter of Bαt is at most
1 + δ(β − α) < γ.
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Linear growth for α > 2d + 1

Nearest neighbor growth ensures at most linear growth for
Tα(0, x).

In view of subadditivity, It suffices to show at least linear
growth for Tα(0, x).

The key is that if

θ ∈ (
d + 1

α− d
, 1),

then no edge of length nθ is used within time n by a vertex in
the Euclidean ball of diameter n.

Divide [0, n]d into a grid of size nθ, and the optimal path from
0 to ne1 must jump from a box to a nearest neighbor box.

It crosses O(n1−θ) such boxes and takes at least O(nθ) time
for a fraction of them by a renormalization argument.
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Future questions

Study the critical values α = d , 2d , 2d + 1.

Properties of rescaled growth set.

Bounds for boundary fluctuations.

On a torus study the time evolution of the fraction covered.
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Thank You

S. Chatterjee LRFPP


